

Nays2D Breach Solver Manual

Last Update:2016.X.XX Release Date: 2016.X.XX

Copyright 2016 iRIC Project All Right Reserved.

目次

Ⅰ概要	1
I.1 NAYS-2D とは I.2 流れ場の計算モデルの特徴 I.3 流砂と河床変動の計算モデルの特徴 I.4 その他の特徴	1 2 2
Ⅱ. 基礎式	
 II.1 流れの基礎方程式 II.2 乱流場の計算方法 II.3 底面摩擦の計算方法 II.4 植生による抵抗の計算方法 II.5 流砂の基礎方程式 II.6 混合粒径モデルについて II.7 河岸浸食モデルについて II.8 斜面崩落モデルについて II.9 支川合流モデルについて 	
Ⅱ.10 破堤モデルについて	24
Ⅱ.10 破堤モデルについて Ⅲ. 計算条件	24 27
 Ⅱ.10 破堤モデルについて Ⅲ.1 ソルバー・タイプの設定 Ⅲ.2 境界条件の設定 Ⅲ.3 時間に関する条件の設定 Ⅲ.4 初期水面形の設定 Ⅲ.5 河床材料の設定 Ⅲ.6 植生の設定 Ⅲ.6 植生の設定 Ⅲ.7 合流点の情報の設定 Ⅲ.8 混合粒径の情報の設定 Ⅲ.9 河岸浸食の情報の設定 Ⅲ.10 その他の設定 Ⅲ.11 ホットスタート機能の設定 Ⅲ.12 破堤モデルの設定 	24 27 27 29 31 32 33 34 35 38 41 42 43 44

I. 概要

I.1 Nays-2D とは

Nays2d は一般曲線座標で境界適合座標^{*1}を用いた非定常平面 2 次元流れと河床変動計算の解析用ソルバであり、その原型は 1990 年代より北海道大学の清水康行によって開発が開始され、数々の改良の後、2004 年に(財)北海道河川防災研究センターの河床変動計算用プリポストソフトウェアーRIC-Nays^{*2}に最初に搭載された計算ソルバです(Version 1.0).

その後,北海道大学の木村一郎によって動的メモリ配置^{**3}へと改良が加えられる とともに,清水康行により河岸浸食モデル,北海道大学の岩崎理樹によるホットス タート機能などが付加され,2010年の iRIC バージョン 1.0 リリース時には添付ソ ルバの 1 つとして配布されました (Vesion 2.0).

さらに、岩崎理樹による混合粒径多層モデル、(株)開発工営社の井上卓也・濱木 道大による河川合流点モデルなどの機能追加が行われ、(財)北海道河川防災研究セ ンターの旭一岳の企画・監修のもと、2011年3月に iRIC Version2.0 用の計算ソル バとして登録されました (Version 3.0).

乱れや剥離を伴う非定常流れの計算に定評があり,非定常渦のリアルな動きを動 的に表現可能なモデルです.また,河床変動計算も砂州の発生・発達・移動などを 精度良く再現可能です.実河川での適用例も多く,樹木や植生の影響評価,洪水氾 濫計算,河川合流点の影響検討,河岸浸食災害の検証などに適用されています.

^{**}i直交座標系(デカルト座標系)では曲がった複雑な境界を表現することが困難なため,境界面に 沿って座標軸を設定する座標系のことです.デカルト座標系で記述された支配方程式を一般座標に 変換(写像)した方程式を計算する必要があります.その特徴から境界適合座標系とも呼ばれます. **2 [URL] http://i-ric.org/nays/en/index.html

^{※3}プログラムの走行中にそのプログラムで使用するメモリの確保を行う機能です.これにより,メ モリ領域の無駄な浪費を抑えることができます.

I.2 流れ場の計算モデルの特徴

- ①座標系は一般曲線座標系を採用しており,複雑な境界や河床地形を直接考慮で きます.
- ②本川と支川の合流点の計算が可能です.
- ③運動方程式の移流項の差分法は、風上差分法(1次精度)と CIP 法^{**1}から選択 可能です.
- ④乱流場の計算方法は、渦動粘性係数一定、ゼロ方程式モデル、k-εモデルから選 択可能です.
- ⑤上下流端の境界条件については、周期境界条件、下流端水位の設定、上流端流 速の設定など、さまざまな設定が可能です.これにより、限られた観測資料か ら簡単に境界条件を設定することができます.
- ⑥初期水面形は、等流計算から選択可能です.
- ⑦底面の摩擦の評価方法は、マニングの粗度係数を用いて設定します.
- ⑧計算領域中の障害物については、計算セル単位で考慮できます.計算セルごと にフラグを設定し、障害物を定義します.これにより、橋脚など河川構造物を 簡単に計算に取り入れることができます.
- ⑨植生の流れへの影響については、抗力という形で考慮することができます.植 生の密生度は、任意の実数値でセル単位ごとに指定することができます.

I.3 流砂と河床変動の計算モデルの特徴

①流況計算のみを行うか,流況計算と合せて河床変動計算を行うか選択可能です。②流砂の種類は,掃流砂のみと掃流砂+浮遊砂から選択可能です。

- ③河床材料は、均一粒径と混合粒径の2種類が選択可能です. 混合粒径を選択した場合、粒度分布の変化を深さ方向に多層で記憶させることができます.
- ④限界角度による斜面崩落を考慮することができます.河床変動計算では、本来 生じえる斜面角度よりも急な角度が計算されることがあります.これを防ぐた め、河床の角度がある限界角度を超えたとき、斜面崩落が生じるというモデル を導入しています.これにより、河岸浸食など流砂連続式だけでは評価しえな いような現象をある程度考慮することが可能となります.
- ⑤河岸浸食を考慮することができます.河岸移動量は河岸からの流砂量と河床変 動量に応じたものとなります.また,河岸浸食に伴い河道幅が変化した場合, それにあわせて計算格子が自動的に移動します.
- ⑥堤防決壊を考慮することができます.河道の水位が破堤開始水位に到達すると 堤防が決壊し,堤体崩壊土量に応じて決壊地点から上下流方向へ破堤拡幅します.

^{※4}高次精度差分法の一つ.3次多項式を補間関数として使用することで,数値拡散を抑え,局所的な 高精度補間が出来きます.

I.4 その他の特徴

①ホットスタート(前回の計算結果の途中の状態から,継続して計算を行うこと)に対応しています.

II. 基礎式

Ⅱ.1 流れの基礎方程式

II.1.1 直交座標系における基礎式

はじめに,一般曲線座標系に変換(写像)する前の直交座標系(*x*, *y*)における基礎 式を以下に示します.

[連続式]

$$\frac{\partial h}{\partial t} + \frac{\partial (hu)}{\partial x} + \frac{\partial (hv)}{\partial y} = 0 \tag{1}$$

[運動方程式]

$$\frac{\partial(uh)}{\partial t} + \frac{\partial(hu^2)}{\partial x} + \frac{\partial(huv)}{\partial y} = -hg \frac{\partial H}{\partial x} - \frac{\tau_x}{\rho} + D^x - \frac{F_x}{\rho}$$
(2)

$$\frac{\partial(vh)}{\partial t} + \frac{\partial(huv)}{\partial x} + \frac{\partial(hv^2)}{\partial y} = -hg \frac{\partial H}{\partial y} - \frac{\tau_y}{\rho} + D^y - \frac{F_y}{\rho}$$
(3)

ただし,

$$\frac{\tau_x}{\rho} = C_f u \sqrt{u^2 + v^2} \qquad \frac{\tau_y}{\rho} = C_f v \sqrt{u^2 + v^2}$$
(4)

$$D^{x} = \frac{\partial}{\partial x} \left[v_{t} \frac{\partial(uh)}{\partial x} \right] + \frac{\partial}{\partial y} \left[v_{t} \frac{\partial(uh)}{\partial y} \right]$$
(5)

$$D^{y} = \frac{\partial}{\partial x} \left[v_{t} \frac{\partial (vh)}{\partial x} \right] + \frac{\partial}{\partial y} \left[v_{t} \frac{\partial (vh)}{\partial y} \right]$$
(6)

$$\frac{F_x}{\rho} = \frac{1}{2}C_D a_s h u \sqrt{u^2 + v^2} \qquad \frac{F_y}{\rho} = \frac{1}{2}C_D a_s h v \sqrt{u^2 + v^2}$$
(7)

ここで、hは水深、tは時間、uはx方向の流速、vはy方向の流速、gは重力加 速度、Hは水位、 τ_x はx方向の河床せん断力、 τ_y はy方向の河床せん断力、 F_x はx方向の植生による抵抗力、 F_y はy方向の植生による抵抗力、 c_f は河床せん断係数、 v_t は渦動粘性係数、 c_p は植生の抗力係数、 a_s は単位体積に占める植生の遮断面積 です.

Ⅱ.1.2 一般曲線座標系への変換

次に直交座標における平面 2 次元流れの基礎式を一般座標(ξ, η)に変換します. 一般座標に変換することにより,任意形状(境界条件に沿って)に計算メッシュを 設定可能となります.以下に直交座標系から一般曲線座標系への変換方法を示しま す.

$$\frac{\partial}{\partial x} = \frac{\partial\xi}{\partial x}\frac{\partial}{\partial\xi} + \frac{\partial\eta}{\partial x}\frac{\partial}{\partial\eta}$$

$$\frac{\partial}{\partial x} = \frac{\partial\xi}{\partial x}\frac{\partial}{\partial x} + \frac{\partial\eta}{\partial y}\frac{\partial}{\partial\eta}$$
(8)

$$\frac{\partial}{\partial y} = \frac{\partial y}{\partial y} \frac{\partial}{\partial \xi} + \frac{\partial \eta}{\partial y} \frac{\partial}{\partial \eta}$$
(9)

または,

$$\begin{pmatrix} \frac{\partial}{\partial x} \\ \frac{\partial}{\partial y} \end{pmatrix} = \begin{pmatrix} \xi_x & \eta_x \\ \xi_y & \eta_y \end{pmatrix} \begin{pmatrix} \frac{\partial}{\partial \xi} \\ \frac{\partial}{\partial \eta} \end{pmatrix}$$
(10)

$$\xi_x = \frac{\partial \xi}{\partial x}, \quad \xi_y = \frac{\partial \xi}{\partial y}, \quad \eta_x = \frac{\partial \eta}{\partial x}, \quad \eta_y = \frac{\partial \eta}{\partial y}$$
(11)

同様に,

$$\frac{\partial}{\partial\xi} = \frac{\partial x}{\partial\xi} \frac{\partial}{\partial x} + \frac{\partial y}{\partial\xi} \frac{\partial}{\partial y}$$
(12)

$$\frac{\partial}{\partial \eta} = \frac{\partial x}{\partial \eta} \frac{\partial}{\partial x} + \frac{\partial y}{\partial \eta} \frac{\partial}{\partial y}$$
(13)

または,

$$\begin{pmatrix} \frac{\partial}{\partial\xi} \\ \frac{\partial}{\partial\eta} \end{pmatrix} = \begin{pmatrix} x_{\xi} & y_{\xi} \\ x_{\eta} & y_{\eta} \end{pmatrix} \begin{pmatrix} \frac{\partial}{\partial x} \\ \frac{\partial}{\partialy} \end{pmatrix}$$
(14)

ただし,

$$x_{\xi} = \frac{\partial x}{\partial \xi}, \quad x_{\eta} = \frac{\partial x}{\partial \eta}, \quad y_{\xi} = \frac{\partial y}{\partial \xi}, \quad y_{\eta} = \frac{\partial y}{\partial \eta}$$
 (15)

$$\begin{aligned} & \left(\frac{\partial}{\partial\xi} \\ & \frac{\partial}{\partial\eta}\right) = \frac{1}{\xi_x \eta_y - \xi_y \eta_x} \begin{pmatrix} \eta_y & -\eta_x \\ -\xi_y & \xi_x \end{pmatrix} \begin{pmatrix} \frac{\partial}{\partial x} \\ & \frac{\partial}{\partial y} \end{pmatrix} = \begin{pmatrix} x_\xi & y_\xi \\ x_\eta & y_\eta \end{pmatrix} \begin{pmatrix} \frac{\partial}{\partial x} \\ & \frac{\partial}{\partial y} \end{pmatrix} \tag{16} \end{aligned}$$

$$\Xi \Xi \mathfrak{C}, \quad J = \xi_x \eta_y - \xi_y \eta_x \succeq \mathfrak{F} \mathfrak{Z} \succeq,$$

$$\frac{1}{J} \begin{pmatrix} \eta_y & -\eta_x \\ -\xi_y & \xi_x \end{pmatrix} = \begin{pmatrix} x_\xi & y_\xi \\ x_\eta & y_\eta \end{pmatrix}$$
(17)

なので,

$$x_{\xi} = \frac{1}{J} \eta_{y}, \quad y_{\xi} = -\frac{1}{J} \eta_{x}, \quad x_{\eta} = -\frac{1}{J} \xi_{y}, \quad y_{\eta} = \frac{1}{J} \xi_{x}$$
 (18)

または,

$$\eta_{y} = Jx_{\xi}, \quad \eta_{x} = -Jy_{\xi}, \quad \xi_{y} = -Jx_{\eta}, \quad \xi_{x} = Jy_{\eta}$$
(19)

$$J = \xi_{x} \eta_{y} - \xi_{y} \eta_{x} = J^{2} \left(x_{\xi} y_{\eta} - x_{\eta} y_{\xi} \right)$$
(20)

$$\mathcal{L} \mathcal{D},$$

$$J = \frac{1}{x_{\xi} y_{\eta} - x_{\eta} y_{\xi}}$$
(21)

流速の (ξ, η) 成分を (u^{ξ}, u^{η}) とすると, $u^{\xi} = \xi_x u + \xi_y v$ (22)

$$u^{\eta} = \eta_x u + \eta_y v \tag{23}$$

または,

$$\begin{pmatrix} u^{\xi} \\ u^{\eta} \end{pmatrix} = \begin{pmatrix} \xi_x & \xi_y \\ \eta_x & \eta_y \end{pmatrix} \begin{pmatrix} u \\ v \end{pmatrix}$$
(24)

$$\begin{pmatrix} u \\ v \end{pmatrix} = \frac{1}{J} \begin{pmatrix} \eta_y & -\xi_y \\ -\eta_x & \xi_x \end{pmatrix} \begin{pmatrix} u^{\xi} \\ u^{\eta} \end{pmatrix}$$
(25)

Ⅱ.1.3 一般曲線座標系における基礎式

直交座標系(x, y)における基礎式を一般座標系に変換した基礎式を以下に示します.

[連続式]

$$\frac{\partial}{\partial t} \left(\frac{h}{J} \right) + \frac{\partial}{\partial \xi} \left(\frac{hu^{\xi}}{J} \right) + \frac{\partial}{\partial \eta} \left(\frac{hu^{\eta}}{J} \right) = 0$$
(26)

$$\begin{bmatrix} \overline{\boldsymbol{x}} \underline{\boldsymbol{y}} \overline{\boldsymbol{x}} \overline{\boldsymbol{x}} \overline{\boldsymbol{x}} \\ \frac{\partial u^{\xi}}{\partial t} + u^{\xi} \frac{\partial u^{\xi}}{\partial \xi} + u^{\eta} \frac{\partial u^{\xi}}{\partial \eta} + \alpha_{I} u^{\xi} u^{\xi} + \alpha_{2} u^{\xi} u^{\eta} + \alpha_{3} u^{\eta} u^{\eta} = \\ - g \left[\left(\xi_{x}^{2} + \xi_{y}^{2} \right) \frac{\partial H}{\partial \xi} + \left(\xi_{x} \eta_{x} + \xi_{y} \eta_{y} \right) \frac{\partial H}{\partial \eta} \right] \\ - \left(C_{f} + \frac{1}{2} C_{D} a_{s} h \right) \frac{u^{\xi}}{hJ} \sqrt{\left(\eta_{y} u^{\xi} - \xi_{y} u^{\eta} \right)^{2} + \left(- \eta_{x} u^{\xi} + \xi_{x} u^{\eta} \right)^{2}} + D^{\xi} \\ \frac{\partial u^{\eta}}{\partial t} + u^{\xi} \frac{\partial u^{\eta}}{\partial \xi} + u^{\eta} \frac{\partial u^{\eta}}{\partial \eta} + \alpha_{4} u^{\xi} u^{\xi} + \alpha_{5} u^{\xi} u^{\eta} + \alpha_{6} u^{\eta} u^{\eta} = \\ - g \left[\left(\eta_{x} \xi_{x} + \eta_{y} \xi_{y} \right) \frac{\partial H}{\partial \xi} + \left(\eta_{x}^{2} + \eta_{y}^{2} \right) \frac{\partial H}{\partial \eta} \right] \\ - \left(C_{f} + \frac{1}{2} C_{D} a_{s} h \right) \frac{u^{\eta}}{hJ} \sqrt{\left(\eta_{y} u^{\xi} - \xi_{y} u^{\eta} \right)^{2} + \left(- \eta_{x} u^{\xi} + \xi_{x} u^{\eta} \right)^{2}} + D^{\eta}$$

$$(28)$$

ただし,

$$\alpha_{1} = \xi_{x} \frac{\partial^{2} x}{\partial \xi^{2}} + \xi_{y} \frac{\partial^{2} y}{\partial \xi^{2}}, \quad \alpha_{2} = 2 \left(\xi_{x} \frac{\partial^{2} x}{\partial \xi \partial \eta} + \xi_{y} \frac{\partial^{2} y}{\partial \xi \partial \eta} \right), \quad \alpha_{3} = \xi_{x} \frac{\partial^{2} x}{\partial \eta^{2}} + \xi_{y} \frac{\partial^{2} y}{\partial \eta^{2}} \quad (29)$$

$$\alpha_{4} = \eta_{x} \frac{\partial^{2} x}{\partial \xi^{2}} + \eta_{y} \frac{\partial^{2} y}{\partial \xi^{2}}, \quad \alpha_{5} = 2 \left(\eta_{x} \frac{\partial^{2} x}{\partial \xi \partial \eta} + \eta_{y} \frac{\partial^{2} y}{\partial \xi \partial \eta} \right), \quad \alpha_{6} = \eta_{x} \frac{\partial^{2} x}{\partial \eta^{2}} + \eta_{y} \frac{\partial^{2} y}{\partial \eta^{2}} \quad (30)$$
$$D^{\xi} =$$

$$\left(\xi_x \frac{\partial}{\partial \xi} + \eta_x \frac{\partial}{\partial \eta}\right) \left[v_t \left(\xi_x \frac{\partial u^{\xi}}{\partial \xi} + \eta_x \frac{\partial u^{\xi}}{\partial \eta}\right)\right] + \left(\xi_y \frac{\partial}{\partial \xi} + \eta_y \frac{\partial}{\partial \eta}\right) \left[v_t \left(\xi_y \frac{\partial u^{\xi}}{\partial \xi} + \eta_y \frac{\partial u^{\xi}}{\partial \eta}\right)\right] (31) D^{\eta} =$$

$$\left(\xi_x \frac{\partial}{\partial\xi} + \eta_x \frac{\partial}{\partial\eta}\right) \left[v_t \left(\xi_x \frac{\partial u^{\eta}}{\partial\xi} + \eta_x \frac{\partial u^{\eta}}{\partial\eta}\right) \right] + \left(\xi_y \frac{\partial}{\partial\xi} + \eta_y \frac{\partial}{\partial\eta}\right) \left[v_t \left(\xi_y \frac{\partial u^{\eta}}{\partial\xi} + \eta_y \frac{\partial u^{\eta}}{\partial\eta}\right) \right]$$
(32)
$$\xi_x = \frac{\partial\xi}{\partial x}, \quad \xi_y = \frac{\partial\xi}{\partial y}, \quad \eta_x = \frac{\partial\eta}{\partial x}, \quad \eta_y = \frac{\partial\eta}{\partial y}$$
(33)

$$u^{\xi} = \xi_x u + \xi_y v, \quad u^{\eta} = \eta_x u + \eta_y v \tag{34}$$

$$J = \frac{I}{x_{\xi} y_{\eta} - x_{\eta} y_{\xi}} \tag{35}$$

また、一般座標の運動方程式中の拡散項 D^{ξ} 、 D^{η} については展開すると項の数が 膨大になるので以下の様な条件を仮定して簡略化を行います.

1.メトリック係数の2階微分量を局所的にゼロとする.

2. 局所的に擬似直交座標として扱う.

この結果, 拡散項は近似的に以下のように表せます.

$$D^{\xi} \simeq \frac{\partial}{\partial \xi} \left(v_t \xi_r^2 \frac{\partial u^{\xi}}{\partial \xi} \right) + \frac{\partial}{\partial \eta} \left(v_t \eta_r^2 \frac{\partial u^{\xi}}{\partial \eta} \right)$$
(36)

$$D^{\eta} \simeq \frac{\partial}{\partial \xi} \left(v_t \xi_r^2 \frac{\partial u^{\eta}}{\partial \xi} \right) + \frac{\partial}{\partial \eta} \left(v_t \eta_r^2 \frac{\partial u^{\eta}}{\partial \eta} \right)$$
(37)

ここで、 ξ_r 、 η_r は一般座標上の局所的な格子サイズと、実距離の比率を表す係数で、次式で定義されます.

$$\frac{\Delta\xi}{\Delta\tilde{\xi}} = \xi_r \,, \quad \frac{\Delta\eta}{\Delta\tilde{\eta}} = \eta_r \tag{38}$$

なお、上記 D^{ξ} , D^{η} の近似式の誘導には局所的な直交関係の仮定より以下の関係 が用いられています.

$$\xi_x^2 + \xi_y^2 = \xi_r^2 \Big(\xi_x^2 + \xi_y^2 \Big) = \xi_r^2 \Big(\sin^2 \theta + \cos^2 \theta \Big) = \xi_r^2$$
(39)

$$\xi_{x}\eta_{x} + \xi_{y}\eta_{y} = \xi_{r}\eta_{r}\left(\xi_{x}\tilde{\eta}_{x} + \xi_{y}\tilde{\eta}_{y}\right) = \xi_{r}\eta_{r}\left(-\cos\theta\sin\theta + \cos\theta\sin\theta\right) = 0$$
(40)

$$\eta_x^2 + \eta_y^2 = \eta_r^2 \left(\tilde{\eta}_x^2 + \tilde{\eta}_y^2 \right) = \eta_r^2 \left(\sin^2 \theta + \cos^2 \theta \right) = \eta_r^2$$

$$\tag{41}$$

$$J = \xi_x \eta_y - \xi_y \eta_x = \xi_r \eta_r \left(\tilde{\xi}_x \tilde{\eta}_y - \tilde{\xi}_y \tilde{\eta}_x \right) = \xi_r \eta_r \left(\sin^2 \theta + \cos^2 \sin \theta \right) = \xi_r \eta_r$$
(42)

ただし、 θ は x軸と ξ 軸(または、y軸と η 軸)のなす角度です.

II.2 乱流場の計算方法

乱流とは大小さまざまな渦を伴う不規則な流れのことです. Nays-2D では、乱流場の計算方法として、「渦動粘性係数一定」、「ゼロ方程式モデル」、「k-εモデル」から選択可能です.

II.2.1 渦動粘性係数一定

渦動粘性係数 ν_{i} とは、乱流状態の流れにおける見かけの運動粘性率のことです. 「渦動粘性係数一定」を選択した場合、(5)(6)式の ν_{i} を 0.000001[m²/s]として計算を行います.

II.2.2 ゼロ方程式モデル

渦動粘性係数 v_i は、一般的に乱流の代表流速 v_i と代表長さiの積で表されます.

(43)

 $v_t = v_t l$

水深と粗度が横断方向に緩やかに変化する流れ場においては、水平方向の渦動粘 性係数と鉛直方向の渦動粘性係数は同じオーダーであると仮定し、主として底面摩 擦速度と水深が運動量輸送を規定すると考え、渦動粘性係数_ν,を以下の式で表しま す.

$$v_t = au_*h \tag{44}$$

ここに, aは比例定数です.

Fisher¹⁾や Webel・Schatzmann²⁾の実験によれば、鉛直方向の運動量輸送に関わる *a* 値が 0.07 程度であるため、カルマン係数 κ (0.4) を用いて、渦動粘性係数 ν_i を以下の式で表します.

$$v_t = \frac{\kappa}{6} A u_* h + B \tag{45}$$

このモデリングは乱流統計量についての輸送方程式を必要としないのでゼロ方程 式モデルと呼ばれています.ここで,A, Bはユーザーパラメータで,標準ではA = 1, B = 0です.

k-εモデル

標準型 $k - \epsilon$ モデルによる渦動粘性係数 $\nu_{,}$ は、以下の式で表されます.

$$v_t = C_\mu \frac{k^2}{\varepsilon} \tag{46}$$

ここで、 C_{μ} :モデル定数です. k及び ϵ は次式によって算出します.

$$\frac{\partial k}{\partial t} + u \frac{\partial k}{\partial x} + v \frac{\partial k}{\partial y} = \frac{\partial}{\partial x} \left(\frac{v_t}{\sigma_k} \frac{\partial k}{\partial x} \right) + \frac{\partial}{\partial y} \left(\frac{v_t}{\sigma_k} \frac{\partial k}{\partial y} \right) + P_h + P_{kv} - \varepsilon$$
(47)

$$\frac{\partial \varepsilon}{\partial t} + u \frac{\partial \varepsilon}{\partial x} + v \frac{\partial \varepsilon}{\partial y} = \frac{\partial}{\partial x} \left(\frac{v_t}{\sigma_{\varepsilon}} \frac{\partial \varepsilon}{\partial x} \right) + \frac{\partial}{\partial y} \left(\frac{v_t}{\sigma_{\varepsilon}} \frac{\partial \varepsilon}{\partial y} \right) + C_{1\varepsilon} \frac{\varepsilon}{k} P_h + P_{\varepsilon v} - C_{2\varepsilon} \frac{\varepsilon^2}{k}$$
(48)

		表 II-1 モ [.]	デル定数	
C_{μ}	$C_{1arepsilon}$	$C_{2\varepsilon}$	σ_{k}	$\sigma_{\!arepsilon}$
0.09	1. 44	1.92	1.0	1.3

ここで, $C_{1\varepsilon}$, $C_{2\varepsilon}$, σ_k , σ_{ε} はモデル定数であり, それぞれの値を表 II -1 に示します.

なお, P_{kv}及び P_{ev}は次式によって算出します.

$$P_{kv} = C_k \frac{{u_*}^3}{h} \tag{49}$$

$$P_{\varepsilon v} = C_{\varepsilon} \frac{u_*^4}{h^2} \tag{50}$$

II.3 底面摩擦の計算方法

Nays-2Dでは、底面の摩擦はマニングの粗度係数を用いて設定します. 平均流速 公式にマニング則を適用した場合、(4)式の河床摩擦係数 *C_f*は次式で表現すること ができます.

$$C_f = \frac{g n_m^2}{h^{\frac{1}{3}}} \tag{51}$$

マニングの粗度係数はセル単位に任意の実数値を設定することが可能となっています.また,このマニングの粗度係数はManning-Stricklerにより次式のように相対粗度高さと関連づけることができます.

$$n_m = \frac{k_s^{1/6}}{7.66\sqrt{g}}$$
(52)

ここで、k_sは相対粗度高さで河床材料粒径の1~3倍程度、gは重力加速度です。

II.4 植生による抵抗の計算方法

Nays-2Dでは、植生の抵抗は、植生の抗力係数 C_p と単位体積に占める植生の遮断 面積 a_s を用いて設定します。単位体積に占める植生の遮断面積 a_s は、セル単位で任 意の実数値として設定することができます。

単位体積に占める植生の遮断面積*a*_sは清水ら³⁾が提案した以下の式を用いて算出 されます.

$$a_s = \frac{n_s D_s}{S_s^2} \tag{53}$$

ここで、n_sは植生本数、D_sは植生の平均幹径、S_sはサンプリング格子幅です。

II.5 流砂の基礎方程式

Nays-2Dで、河床変動計算を行う場合、流砂の種類として、「掃流砂のみ」と「掃流砂+浮遊砂」の2種類から選択可能です.また、河床材料については、「均一粒径」と「混合粒径」の2種類から選択可能です.混合粒径モデルはII.6以降に説明し、以下では均一粒径の河床変動モデルについて説明します.

II.5.1 無次元河床せん断力

合成流速Vを次式で定義します.

$$V = \sqrt{\mu^2 + v^2} \tag{54}$$

河床に作用する無次元全せん断力τ*は,

$$\tau_* = \frac{hI_e}{s_g d} \tag{55}$$

ただし、hは水深、 I_e はエネルギー勾配、 s_g は水中比重、dは河床材料の粒径である。 I_e にマニング則を適用すると、 τ_* は次式となります。

$$\tau_* = \frac{C_f V^2}{s_g g d} = \frac{n_m^2 V^2}{s_g d h^{1/3}}$$
(56)

ここで, n_mはマニングの粗度係数です.

II.5.2 掃流砂量

均一粒径モデルを選択した場合は、水深平均流速の方向(Vの方向)の全掃流砂量 q_b は M. P. M 式と芦田・道上の式⁶から求めることができます.

M.P.M 式

$$q_b = 8(\tau_* - \tau_{*c})^{1.5} \sqrt{s_g g d^3}$$
(57)

芦田・道上式

$$q_{b} = 17\tau_{*}^{1.5} \left(1 - \frac{\tau_{*c}}{\tau_{*}}\right) \left(1 - \sqrt{\frac{\tau_{*c}}{\tau_{*}}}\right) \sqrt{s_{g}gd^{3}}$$
(58)

ここで, _{**τ**_{*c}は無次元限界掃流力で岩垣の式⁵で求める.}

以上の式により求められた全流砂量を,流線曲率による二次流と河床勾配の影響 を考慮して ξ , η 方向に変換する. 渡邉ら⁸⁾によれば, ξ , η 方向の掃流砂量は次式 で与えられる.

$$\widetilde{q}_{b}^{\xi} = q_{b} \left[\frac{\widetilde{u}_{b}^{\xi}}{V_{b}} - \gamma \left(\frac{\partial z_{b}}{\partial \widetilde{\xi}} + \cos \theta \frac{\partial z_{b}}{\partial \widetilde{\eta}} \right) \right]$$

$$\widetilde{q}_{b}^{\eta} = q_{b} \left[\frac{\widetilde{u}_{b}^{\eta}}{V_{b}} - \gamma \left(\frac{\partial z_{b}}{\partial \widetilde{\eta}} + \cos \theta \frac{\partial z_{b}}{\partial \widetilde{\xi}} \right) \right]$$
(59)

13

ただし、 \tilde{u}_b^{ξ} および \tilde{u}_b^{η} はそれぞれ ξ および η 方向の河床近傍の流速、 V_b は河床近傍の合成流速、 θ は ξ 軸と η 軸のなす角度である.

γは斜面勾配による流砂の補正係数であり,長谷川⁹によれば次式で与えられる.

$$\gamma = \sqrt{\frac{\tau_{*c}}{\mu_s \mu_k \tau_*}} \tag{61}$$

ただし、 μ_s および μ_k は河床材料の静止摩擦係数および動摩擦係数である.

II.5.3 河床近傍の流速の算定

水深平均流の流れに沿って,水深平均流速と河床近傍の流速の関係を次式のよう な単純な関係式を仮定する.

$$\widetilde{u}_b^s = \beta V \tag{62}$$

ただし、 \tilde{u}_b^s は水深平均流の流線(以下単純に流線と呼ぶ)に沿った河川近傍の流速 である. Engelund¹⁰⁾によれば、水深方向の流速分布に放物線分布を用いた場合、 β は次式となる.

$$\beta = 3\frac{1-\sigma}{3-\sigma}, \quad \sigma = \frac{3}{\phi_0 \kappa + 1} \tag{63}$$

ただし、 ϕ_0 は流速係数(= V/u_*)、 κ はカルマン乗数(=0.4)である.

一般に,流線が曲っている場合には2次流(螺旋流)が発生する,ここではこの2 次流による河床近傍の流速の算定に次式を用いる.

$$\widetilde{u}_b^n = \widetilde{u}_b^s N_* \frac{h}{r_s} \tag{64}$$

ただし、 \tilde{u}_b^n は流線の方向に直交する方向(流線方向から反時計周りに 90 度の方 向)の河床近傍の流速、 r_s は流線の曲率半径、 N_* は定数(=7 Engelund¹⁰)である.

(62) 式および(64) 式より(59) 式および(60) 式中のV_bは,

 $V_b = \sqrt{\tilde{u}_b^{s^2} + \tilde{u}_b^{n^2}} \approx \tilde{u}_b^s \tag{65}$

となる. なお上式の近似は、一般に \tilde{u}_b^n は \tilde{u}_b^s より1オーダー小さい値となるためである.

 \tilde{u}_b^{ξ} および \tilde{u}_b^{η} は以下の変換により求められる.

$$\widetilde{u}_{b}^{\xi} = \frac{\partial \widetilde{\xi}}{\partial s} \widetilde{u}_{b}^{s} + \frac{\partial \widetilde{\xi}}{\partial n} \widetilde{u}_{b}^{n} = \left(\frac{\partial x}{\partial s} \frac{\partial \widetilde{\xi}}{\partial x} + \frac{\partial y}{\partial s} \frac{\partial \widetilde{\xi}}{\partial y}\right) \widetilde{u}_{b}^{s} + \left(\frac{\partial x}{\partial n} \frac{\partial \widetilde{\xi}}{\partial x} + \frac{\partial y}{\partial n} \frac{\partial \widetilde{\xi}}{\partial y}\right) \widetilde{u}_{b}^{n}$$

$$= \left(\cos\theta_{s}\tilde{\xi}_{x} + \sin\theta_{s}\tilde{\xi}_{y}\right)\tilde{u}_{b}^{s} + \left(-\sin\theta_{s}\tilde{\xi}_{x} + \cos\theta_{s}\tilde{\xi}_{y}\right)\tilde{u}_{b}^{n}$$

$$= \frac{1}{\xi_{r}}\left\{\left(\cos\theta_{s}\xi_{x} + \sin\theta_{s}\xi_{y}\right)\tilde{u}_{b}^{s} + \left(-\sin\theta_{s}\xi_{x} + \cos\theta_{s}\xi_{y}\right)\tilde{u}_{b}^{n}\right\}$$

$$(66)$$

$$\tilde{u}_{b}^{\eta} = \frac{\partial\tilde{\eta}}{\partial s}\tilde{u}_{b}^{s} + \frac{\partial\tilde{\eta}}{\partial n}\tilde{u}_{b}^{n} = \left(\frac{\partial x}{\partial s}\frac{\partial\tilde{\eta}}{\partial x} + \frac{\partial y}{\partial s}\frac{\partial\tilde{\eta}}{\partial y}\right)\tilde{u}_{b}^{s} + \left(\frac{\partial x}{\partial n}\frac{\partial\tilde{\eta}}{\partial x} + \frac{\partial y}{\partial n}\frac{\partial\tilde{\eta}}{\partial y}\right)\tilde{u}_{b}^{n}$$

$$= \left(\cos\theta_{s}\tilde{\eta}_{x} + \sin\theta_{s}\tilde{\eta}_{y}\right)\tilde{u}_{b}^{s} + \left(-\sin\theta_{s}\tilde{\eta}_{x} + \cos\theta_{s}\tilde{\eta}_{y}\right)\tilde{u}_{b}^{n}$$

$$= \frac{1}{\eta_{r}}\left\{\left(\cos\theta_{s}\eta_{x} + \sin\theta_{s}\eta_{y}\right)\tilde{u}_{b}^{s} + \left(-\sin\theta_{s}\eta_{x} + \cos\theta_{s}\eta_{y}\right)\tilde{u}_{b}^{n}\right\}$$

$$(67)$$

ただし、sおよびnはそれぞれ流線およびこれに直交する方向を表し、流線とx軸のなす角度を θ_s として、

$$\frac{\partial x}{\partial n} = -\frac{v}{V} = -\sin\theta_s, \quad \frac{\partial y}{\partial n} = \frac{u}{V} = \cos\theta_s \tag{68}$$

$$\frac{\partial x}{\partial s} = -\frac{u}{V} = \cos\theta_s, \quad \frac{\partial y}{\partial s} = \frac{v}{V} = \sin\theta_s \tag{69}$$

などの関係を用いている.また、(63)式のように β を表しましたが、(59)、(60) 式の右辺第1項には結局、分子・分母に β が含まれることになるので、 β が任意の 値で良いことになります.

II.5.4 流線の曲率

以下に(61)式で用いられる流線の曲率(1/曲率半径)は次式で求められる.

$$\frac{1}{r_s} = \frac{\partial \theta_s}{\partial s} \tag{70}$$

 θ_s はx軸とs方向の角度なので、

$$\theta_s = tan^{-1} \left(\frac{v}{u} \right) \tag{71}$$

したがって、

$$\frac{1}{r_s} = \frac{\partial}{\partial s} \left[\tan^{-1}(T) \right] = \frac{\partial}{\partial T} \left[\tan^{-1}(T) \right] \frac{\partial T}{\partial s} = \frac{1}{1 + T^2} \frac{\partial T}{\partial s}$$
(72)

ただし、T = v/uとしている.ここで、

$$\frac{1}{1+T^2} = \frac{1}{1+\left(\frac{v}{u}\right)^2} = \frac{u^2}{u^2+v^2} = \frac{u^2}{V^2}$$
(73)

$$\frac{\partial T}{\partial s} = \frac{\partial}{\partial s} \left(\frac{v}{u} \right) = \frac{u \frac{\partial v}{\partial s} - v \frac{\partial u}{\partial s}}{u^2}$$
(74)

$$\frac{\partial}{\partial s} = \frac{\partial x}{\partial s}\frac{\partial}{\partial x} + \frac{\partial y}{\partial s}\frac{\partial}{\partial y} = \frac{u}{V}\frac{\partial}{\partial x} + \frac{v}{V}\frac{\partial}{\partial y} = \frac{u}{V}\left(\xi_x\frac{\partial}{\partial\xi} + \eta_x\frac{\partial}{\partial\eta}\right) + \frac{v}{V}\left(\xi_y\frac{\partial}{\partial\xi} + \eta_y\frac{\partial}{\partial\eta}\right)$$
(75)

よって、曲率 1/r_s は次式で表される.

$$\frac{1}{r_s} = \frac{1}{V^3} \left[u^2 \left(\xi_x \frac{\partial v}{\partial \xi} + \eta_x \frac{\partial v}{\partial \eta} \right) + uv \left(\xi_y \frac{\partial v}{\partial \xi} + \eta_y \frac{\partial v}{\partial \eta} \right) - uv \left(\xi_x \frac{\partial u}{\partial \xi} + \eta_x \frac{\partial u}{\partial \eta} \right) - v^2 \left(\xi_y \frac{\partial u}{\partial \xi} + \eta_y \frac{\partial u}{\partial \eta} \right) \right]$$
(76)

II.5.5 浮遊砂浮上量

浮遊砂の浮上量式としては、以下の Itakura and Kishiの式¹¹⁾を採用する.

$$q_{su} = p_k^* K \left[a_* \frac{\rho_s - \rho}{\rho_s} \cdot \frac{gd}{\sqrt{\tau_*}} \Omega - w_f \right]$$
(77)

$$\Omega = \frac{\tau_*}{B_*} \cdot \frac{\int_{a'}^{\infty} \xi \frac{1}{\sqrt{\pi}} \exp\left[-\xi^2\right] d\xi}{\int_{a'}^{\infty} \frac{1}{\sqrt{\pi}} \exp\left[-\xi^2\right] d\xi} + \frac{\tau_*}{B_* \eta_0} - 1$$
(78)

$$a' = \frac{B_*}{\tau_*} - \frac{1}{\eta_0}, \quad \eta_0 = 0.5, \quad a_* = 0.14, \quad K = 0.008$$
 (79)

ただし、 q_{su} は浮遊砂の単位面積当たりの河床からの浮上量、 w_f は浮遊砂の沈降 速度であり Rubey の式¹²⁾より求める. B_* は揚力算定の際の速度に摩擦速度を適用す るための換算係数であり、均一粒径の場合は $B_* = 0.143$ の一定値が用いられる.

II.5.6 浮遊砂濃度連続式

一般曲線座標系における浮遊砂濃度の連続式は以下の式で表される.

$$\frac{\partial}{\partial t} \left(\frac{\bar{c}h}{j} \right) + \frac{\partial}{\partial \xi} \left(\frac{u^{\xi} \bar{c}h}{j} \right) + \frac{\partial}{\partial \eta} \left(\frac{u^{\eta} \bar{c}h}{j} \right) = \left(\frac{q_{su}}{J} - \frac{w_f c_b}{J} \right)$$
(80)

ここで、 \bar{c} は水深平均浮遊砂濃度、 c_b は河床近傍の浮遊砂濃度(基準点濃度)である. 拡散項については、簡単のため、省略して記述した. また、基準点濃度 c_b すなわち浮遊砂の底面付近(z = b = 0.05D)の濃度は次式で表される.

$$c_{bk} = \int_{a'}^{\infty} \xi \frac{1}{\sqrt{\pi}} \exp\left[-\xi^{2}\right] d\xi = \frac{1}{2\sqrt{\pi}} \exp(a'^{2})$$
(81)

次に、浮遊砂の水深方向平均濃度 \overline{c} と基準点濃度 c_b の関係を知る必要がある. $\overline{c} \ge c_b$ の関係式としては、清水・板倉¹³⁾が用いた次式で与えるものとする.

$$C_{k} = \frac{c_{bk}}{\gamma} \left(1 - e^{-\gamma} \right) \tag{82}$$

II.5.7 流砂連続式

まずは、平面2次元の直交座標系における流砂の連続式を示します.

$$\frac{\partial z_b}{\partial t} + \frac{1}{1 - \lambda} \left[\frac{\partial q_b^x}{\partial x} + \frac{\partial q_b^y}{\partial y} + q_{su} - w_f c_b \right] = 0$$
(83)

ただし、tは時間、 z_b は河床高、 q_b^x 、 q_b^y はx、y方向の単位幅掃流砂量、 q_{su} は 単位面積当たりの浮遊砂浮上量、 w_f は浮遊砂の沈降速度、 c_b は基準点濃度、 λ は河 床材料の空隙率です。

なお,「掃流砂のみ」を選択した場合は,浮遊砂浮上量,基準点濃度はゼロとなり,河床変動に浮遊砂は考慮されません.

次に、流れの連続式と同様に上式を一般座標に変換します.

$$\frac{\partial}{\partial t} \left(\frac{z_b}{J} \right) + \frac{1}{1 - \lambda} \left[\frac{\partial}{\partial \xi} \left(\frac{q_b^{\xi}}{J} \right) + \frac{\partial}{\partial \eta} \left(\frac{q_b^{\eta}}{J} \right) + \left(\frac{q_{su}}{J} \right) - \left(\frac{w_f c_b}{J} \right) \right] = 0$$
(84)

ただし、 q_b^{ξ} 、 q_b^{η} は ξ 、 η 方向の単位幅掃流砂量の反変成分です.

II.6 混合粒径モデルについて

河床材料の種類に「混合粒径」を選択した場合の河床変動の基礎式を以下に示し ます.「混合粒径」を選択した場合,「掃流砂+浮遊砂」の計算は行えないので注 意してください.

混合粒径で構成される河床はある粒度分布により構成されています.この粒度分 布を数値的に扱うためには、図 II-1に示すような河床の粒径加積曲線を n 階層に 分割し、各階層を代表粒径 d_k でとその代表粒子の存在確率 p_k で表現します.なお、 中央粒径 d_m は次式で定義されます.

$$d_m = \sum_{k=1}^n p_k d_k \tag{85}$$

ここに, *d_k* : *k* 階層の代表粒径, *p_k* : 河床全体に占める *k* 階層の粒子の割合です. この様に *n* 階層に分割されたそれぞれの階層における流砂量を見積もり,これを 足し合わせることで河床変動を計算します.したがって,河床の連続式は次式で表 わされます.

$$\frac{\partial}{\partial t} \left(\frac{z_b}{J} \right) + \frac{1}{1 - \lambda} \left[\frac{\partial}{\partial \xi} \left(\frac{\sum q_{bk}^{\xi}}{J} \right) + \frac{\partial}{\partial \eta} \left(\frac{\sum q_{bk}^{\eta}}{J} \right) \right] = 0$$
(86)

ここに、 z_b : 河床高、 λ : 河床の空隙率、 q_{bk}^{ξ} , q_{bk}^{η} : ξ , η 方向の k 階層の掃流砂量です. 各階層における全掃流砂量は、粒径別に拡張された芦田・道上式により求めます.

$$q_{bk} = 17\tau_*^{3/2} \left(1 - \frac{\tau_{*ck}}{\tau_{*k}}\right) \left(1 - \sqrt{\frac{\tau_{*ck}}{\tau_{*k}}}\right) \sqrt{s_g g d_k^3}$$
(87)

図 II-1 粒径分布の取り扱い

ここに、 q_{bk} : 流線方向の全流砂量、 s_g : 土粒子の水中比重、 τ_{*k} : k階層の粒径 に作用する無次元掃流力、 τ_{*ck} : k階層の粒径の無次元限界掃流力です. ここで、 τ_{*k} は次式で求められます.

$$\tau_{*k} = \frac{{u_*}^2}{s_g g d_k} \tag{88}$$

また,各粒径の無次元限界掃流力の算定には,遮蔽効果を考慮する必要がありま す.ここでは,Egiazaroffの式を修正した浅田の式¹⁴⁾を用います.

-2

$$\frac{\tau_{*ck}}{\tau_{*cm}} = \left[\frac{\log_{10} 23}{\log_{10} \left(21\frac{d_k}{d_m} + 2\right)}\right]^2$$
(89)

ここで, *τ*_{*cm}: 中央粒径の無次元限界掃流力で, 岩垣の式⁵いて算定します. 全流砂量から*ξ*, *η*方向の流砂量の算定は均一粒径の場合と同じく渡邉の式⁸⁾を用います.

$$\tilde{q}_{bk}^{\ \xi} = q_{bk} \left[\frac{\tilde{u}_b^{\xi}}{V_b} - \gamma \left(\frac{\partial z_b}{\partial \tilde{\xi}} + \cos \theta \frac{\partial z_b}{\partial \tilde{\eta}} \right) \right]$$
(90)

$$\tilde{q}_{bk}^{\ \eta} = q_{bk} \left[\frac{\tilde{u}_b^{\ \eta}}{V_b} - \gamma \left(\frac{\partial z_b}{\partial \tilde{\eta}} + \cos \theta \frac{\partial z_b}{\partial \tilde{\xi}} \right) \right] \tag{91}$$

ここで、流速の添え字 b は底面近傍の流速を表わしています.河川湾曲流など流線が曲げられる場合、流線とは垂直方向に 2 次流と呼ばれる流れが発生し、土砂の移動に大きな影響を及ぼします.ここでは Engelund に従い、以下のように 2 次流による横断方向の流速を見積もります.

$$\widetilde{u}_b^n = \widetilde{u}_b^s N_* \frac{h}{r_s} \tag{92}$$

ここで、 \tilde{u}_{b}^{s} 、 \tilde{u}_{b}^{n} : *s*、*n*軸の底面近傍の流速、 r_{s} : 流線の曲率、 N_{*} : 2次流算定 の係数でEngelund¹⁰によると7です. この*s*、*n*軸の流速を座標変換によって、 ξ 、 η 方向に変換し、流砂量の見積もりに用います. また、 γ は長谷川⁹によるものを簡 易的に各粒径別に拡張します.

$$\gamma = \sqrt{\frac{\tau_{*ck}}{\mu_s \mu_k \tau_{*k}}} \tag{93}$$

また,混合粒径河床での分級現象を再現するために,芦田・江頭・劉ら¹⁵提唱した多層モデルの概念を導入します.これは,河床を図 **11-2** のように河床を交換層, 遷移層及び堆積層に分割するものです.この時,交換層における粒度分布の時間変 化は次式で計算されます.

$$\frac{\partial}{\partial t} \left(\frac{p_{mk}}{J} \right) + \frac{p_{bk}}{e_m} \frac{\partial}{\partial t} \left(\frac{z_b}{J} \right) + \frac{1}{(1 - \lambda)e_m} \left[\frac{\partial}{\partial \xi} \left(\frac{q_{bk}^{\xi}}{J} \right) + \frac{\partial}{\partial \eta} \left(\frac{q_{bk}^{\eta}}{J} \right) \right] = 0$$
(94)

ここで、 p_{mk} : 交換層での各粒径の存在割合、 e_m : 交換層厚で最大粒径もしくは 90%粒径が用いられます.また、 p_{bk} は河床が浸食しているか堆積しているかにより 取る値が異なり、以下のように扱います.

$$p_{bk} = p_{mk} \qquad \frac{\partial z}{\partial t} > 0$$

$$p_{bk} = p_{tk} \qquad \frac{\partial z}{\partial t} < 0$$
(95)

ここで, *p*_{tk}: 遷移層における各粒径の存在割合です. なお, 流砂量の計算に用いる各粒径の存在割合は交換層のものです.

			_
Î	p_m	e_m	交換層
	p_t		- 遷移層
Z.	$p_d(N_d)$	e_d	堆積層
	$p_d(N_d-1)$		- 堆積層
	$p_d(N_d-2)$	e_d	

<i>p</i> _d (1)	e_d	堆積層
---------------------------	-------	-----

図 II-2 多層モデルの概念図

数値計算上では、浸食・堆積だけでなく、変動量によっても扱いを変える必要が あります.すなわち、堆積が生じる場合で、1ステップの河床変動量によって遷移 層厚が堆積層厚を上回った場合、堆積層厚分を新たな堆積層とし、残りの部分を遷 移層とします.また、反対に浸食が生じる場合では、河床変動によって遷移層がな くなった場合は、遷移層直下の堆積層を新たな堆積層とします.

Ⅱ.7 河岸浸食モデルについて

Nays2Dでは、河岸侵食を考慮した計算を行うことができます。河岸移動量は河岸からの流砂量と河床変動量を考慮し次のように見積もります¹⁷⁾.

$$der = \pm \frac{1}{1 - \lambda} \frac{\tilde{q}_b^{\eta}}{\eta_r B_h} \Delta t + \frac{\Delta z}{\tan \theta_c}$$
(96)

ここに、derは河岸移動量で侵食を正と定義します。 Δz は河岸近傍の河床変動量、 B_h は河岸高さ、 θ_c は河岸の角度、 Δt は計算時間刻みです。

図 II-3 河岸浸食計算の模式図

II.8 斜面崩落モデルについて

河床変動計算では、河床高さは(84)式に示す流砂の連続式により更新されます. しかしながらこの式から計算された河床は、河床材料が持つ安息角以上の急勾配と なることがあります.このような現象は例えば、高水敷と低水路の間や構造物周辺 の河床変動、砂州前縁線の近傍でみられます.また河岸浸食の様な現象は、流砂の 連続関係のほかに、河岸から土砂が崩落することも重要な要素となります.このよ うな現象を計算格子内で扱うには、河床変動により計算された河床角度をある基準 値以下に補正する斜面崩落モデルの導入が必要となります.斜面崩落モデルにはこ れまで様々なモデルが提案されています.Nays2dではその中でも簡便なモデルであ る限界角度を判定基準とした斜面崩落モデルを用います.これは、一メッシュ間の 角度が設定したある角度を超えたとき、土砂の体積保存を考えて瞬時に限界角度に するというモデルです.

図 II-4 斜面崩落モデルの概念図

II.9 支川合流モデルについて

- (1)考慮できる流入河川数は2(本川と支川)で、下流端では合流して流量が一つ になっている必要があります.
- (2)支川合流は、本川の左右岸のどちらから合流するかを選択可能です.
- (3)計算メッシュの合流タイプは、支川合流の角度によって、図 II-5、図 II のように2通りを選択可能です. (A タイプ;分岐合流タイプ, B タイプ;横 合流タイプ)
- (4)支川合流の計算を行う場合,「混合粒径」と「河岸浸食」は選択することができません.

図 II-5 Aタイプ対応 grid イメージ

II.10 破堤モデルについて

II.10.1 直交座標系における堤体崩壊土量算出式

Nays2D Breach では,堤体崩壊土量を考慮した破堤拡幅計算を行うことができます.堤体崩壊土量式を,以下に示す.

$$\frac{\mathrm{d}\mathbf{V}}{\mathrm{d}t} = \frac{1}{(1-\lambda')} \alpha_* (\tau_* - \tau_{*c})^{\beta_*} \sqrt{\mathrm{sgd}_{50}^3} \mathrm{Bm}$$

ここに、V:堤体崩壊土量、λ':堤体の空隙率、α_{*}、β_{*}:係数、τ_{*}:無次元掃 流力、τ_{*c}:無次元限界掃流力、s:砂の水中比重、g 重力加速度、d₅₀:堤体材料の 50%粒径、Bm:堤体下幅である.

II.10.2 一般座標系における堤体崩壊土量算出式

一般座標系における堤体崩壊土量算出式を以下に示す.

堤体崩壊土は流線直角方向に崩落すると想定し、以下の式を用いる.

$$\begin{split} \widetilde{q}_{\nu}^{\,s} &= 0\\ \widetilde{q}_{\nu}^{\,n} &= \frac{dV}{dt} = \frac{1}{\left(1 - \lambda^{'}\right)} \sqrt{sgd_{50}^{\,3}} \alpha_{*} \left(\tau_{*} - \tau_{*c}\right)^{\beta_{*}} \end{split}$$

ここに、 $\tilde{\mathbf{q}}_{v}^{s}$: dt 時間あたり流線方向の堤体崩壊土量、 $\tilde{\mathbf{q}}_{v}^{n}$: dt 時間あたり流線直角 方向の堤体崩壊土量、V:堤体崩壊土量、 λ' : 堤体の空隙率、 α_{*} 、 β_{*} : 係数、 τ *: 無次元掃流力、 τ_{*c} : 無次元限界掃流力、S: 砂の水中比重、g 重力加速度、 d50: 堤体材料の 50%粒径である. 「2 次元一般座標における河床変動の基礎式 Yasu Shimizu June 21, 2001」 を参考に,流線方向の堤体崩壊土量式を一般座標系(ξ-η方向)に変換した.

$$\begin{split} \widetilde{q}_{v}^{\xi} &= \frac{\partial \widetilde{\xi}}{\partial t} \widetilde{q}_{v}^{s} + \frac{\partial \widetilde{\xi}}{\partial t} \widetilde{q}_{v}^{n} = \frac{1}{\xi r} \left\{ \left(\cos \theta_{s} \xi_{x} + \sin \theta_{s} \xi_{y} \right) \widetilde{q}_{v}^{s} + \left(-\sin \theta_{s} \xi_{x} + \cos \theta_{s} \xi_{y} \right) \widetilde{q}_{v}^{n} \right\} \\ \widetilde{q}_{v}^{\eta} &= \frac{\partial \widetilde{\eta}}{\partial t} \widetilde{q}_{v}^{s} + \frac{\partial \widetilde{\eta}}{\partial t} \widetilde{q}_{v}^{n} = \frac{1}{\eta r} \left\{ \left(\cos \theta_{s} \eta_{x} + \sin \theta_{s} \eta_{y} \right) \widetilde{q}_{v}^{s} + \left(-\sin \theta_{s} \eta_{x} + \cos \theta_{s} \eta_{y} \right) \widetilde{q}_{v}^{n} \right\} \\ \frac{\Delta \xi}{\Delta \widetilde{\xi}} &= \xi_{r}, \qquad \frac{\Delta \eta}{\Delta \widetilde{\eta}} = \eta_{r} \\ V &= \sqrt{u^{2} + v^{2}} \\ \frac{\partial t}{\partial t} &= -\frac{v}{V} = -\sin \theta_{s}, \qquad \frac{\partial y}{\partial t} = \frac{u}{V} = \cos \theta_{s} \\ \frac{\partial t}{\partial t} &= \frac{u}{V} = \cos \theta_{s}, \qquad \frac{\partial y}{\partial t} = \frac{v}{V} = \sin \theta_{s} \\ \xi_{x} &= \frac{\partial \widetilde{\xi}}{\partial t} = \xi_{x} = \frac{\partial \widetilde{\xi}}{\partial t} = \xi_{r} \widetilde{\xi}_{x}, \qquad \xi_{y} = \frac{\partial \widetilde{\xi}}{\partial y} = \xi_{y} = \frac{\partial \widetilde{\xi}}{\partial y} = \xi_{r} \widetilde{\xi}_{y} \\ \eta_{x} &= \frac{\partial \eta}{\partial t} = \eta_{x} = \frac{\partial \widetilde{\eta}}{\partial x} = \eta_{r} \widetilde{\eta}_{x}, \qquad \eta_{y} = \frac{\partial \eta}{\partial y} = \eta_{y} = \frac{\partial \widetilde{\eta}}{\partial y} = \eta_{r} \widetilde{\eta}_{y} \end{split}$$

なお、 \tilde{q}_{ν}^{η} を算定する段階では向きを考慮していないことから、 \tilde{q}_{ν}^{ξ} の算出に際 しては、破堤進行方向が上流の場合を正の向き、 \tilde{q}_{ν}^{η} の算出に際しては、破堤進 行方向が右岸の場合を正の向きと定め、破堤進行方向が逆の場合には \tilde{q}_{ν}^{ξ} , \tilde{q}_{ν}^{η} に マイナスを付加して区別するものとした.

Ⅱ.10.3 一般座標系における土砂連続式

_

堤体崩壊土量を考慮した一般座標系における土砂連続式を,以下に示す.

$$\frac{\partial}{\partial t} \left(\frac{z_b}{J} \right) + \frac{1}{1 - \lambda} \left[\frac{\partial}{\partial \xi} \left(\frac{q^{\xi}}{J} \right) + \frac{\partial}{\partial \eta} \left(\frac{q^{\eta}}{J} \right) + \frac{\partial}{\partial \xi} \left(\frac{q_{\nu}^{\xi}}{J} \right) + \frac{\partial}{\partial \eta} \left(\frac{q_{\nu}^{\eta}}{J} \right) \right] = 0$$

ここに、 z_b :河床高、 λ :空隙率、 q^{\sharp} : ξ 方向の掃流砂量、 q^{η} : η 方向の総流砂 量、 q_{s}^{ξ} : ξ 方向の堤体崩壊土量、 q_{s}^{η} : η 方向の堤体崩壊土量、J: ヤコビアン

<参考文献>

- Fisher, H.B.: Longitudinal Dispersion and Turbulent Mixing in Open-Channel Flow, Annual Review of Fluid Mechanics, Vol. 5, pp. 59-78, 1973.
- 2)Webel, G., Schatzmann, M.: Transverse Mixing in Open Channel Flow, Journal of Hydraulic Engineering, Vol. 110, No. 4, pp. 423-435, 1984.
- 3)岸 力,黒木幹男:移動床流における河床形状と流体抵抗(I),工学部研究 報告第67号,北海道大学,1973.
- 4) 清水義彦,木葉竹重機・新船隆行:樹林化河道の洪水流況と浮遊砂輸送に関す る数値計算,水工学論文集,第44巻,pp.819-824,2000.
- 5) 岩垣雄一:限界掃流力の流体力学的研究,土木学会論文集,第41号, pp. 1-21. 1956.
- 6) 芦田和男,道上正規:移動床流れの抵抗と掃流砂量に関する基礎的研究,土木 学会論文集,第206号,pp.59-69,1972.
- 7)Kovacs, A., Parker, G.: A new vectorial bedload formulation and its application to the time evolution of straight river channels, J. Fluid Mech., Vol. 267, pp. 153-183, 1994.
- 8) 渡邉明英, 福岡捷二, 安竹悠, 川口広司: 河道湾曲部における河床変動を抑制する 樹木群水制の配置方法, 河川技術論文集, 第7巻, pp. 285-290, 2001.
- 9) 長谷川和義:沖積蛇行の平面および河床形状と流れに関する水理学的研究,北海 道大学博士論文, pp. 1-184, 1984.
- 10) Engelund, F. : Flow and Bed Topography in Channel Bend, Jour. of Hydr. Div., ASCE, Vol. 100. HY11, pp. 1631-1648, 1974.
- 11) Itakura, T. and Kishi, T. : Open channel flow with suspended sediments. *Proc. of ASCE*, *HY8*, pp. 1325-1343, 1980.
- 12) Rubey, W. W. : Settling velocity of gravel, sand and silt particles. *Amer. Jour. Sci*, 25, pp. 325-338, 1933.
- 13) 清水康行,板倉忠興:浮遊砂を考慮した河床変動計算手法,土木試験所月報 No. 396,北海道開発局土木試験所河川研究室,1986.
- 14) 浅田宏・石川晴雄:水流による河床砂礫の分級機構に関する研究(III),電 カ中央研究所報告,第71015号,1972.
- 15) 芦田和男・江頭進治・劉炳義・梅本正樹:蛇行流路における Sorting 現象および平行河床形状に関する研究,京都大学防災研究所年報,第33号,B-2, pp. 261-279,1990.
- 16)Yabe, T., Ishikawa, T.: A Numerical Cubic-Interpolated Pseudoparticle(CIP) Method without Time Splitting Technique for Hyperbokic Equations, Journal of the Physical Society of Japan, Col. 59, No. 7, pp. 2301-2304, 1990.
- 17)Parker, G., Y. Shimizu, G.V. Wilkerson, E.C. Eke, J.D. Abad, J/W/ Lauer, C. Paola, W.E. Dietrich, and V.R. Voller : A new framework for modeling the migration of meandering rivers, *Earth Surface Processes* and Landforms, 36, pp. 70-86, 2011.

Ⅲ. 計算条件

この章では、Nays-2D ソルバーの計算条件について、iRIC の計算条件の設定ダイアログを示しながら説明します.

Ⅲ.1 ソルバー・タイプの設定

Nays2Dには、スタンダード版とアドバンスド版の2つのソルバー・タイプが設定されています.

入門編であるスタンダード版では、一般的な河川区間の流況解析と河床変動解析 が行えます.一方、アドバンスド版では、混合粒径多層モデル、河川合流点モデル、 ホットスタートなど、より複雑な境界条件や初期条件に対応するための多様な機能 を選択できるようになります.

12 計算条件		? ×
グループ ソルパー・タイプ 境界条件 時間 初期水面形 河床材料 植生 +合流点の情報 +混合粒径の情報 +河岸浸食の情報 +その他 +ホットスタート +破堤モデル	 ソルパー・タイプの選択 河床変動計算 移流項の差分方法 +支川合流 +支川合流 +河床材料の種類 +流砂の種類 +均一粒径の掃流砂公式 +河岸侵食 +斜面崩落モデル +乱流モデル 	スタンダード・ 無効・ CIP法・ 無効・ 均一粒径・ 掃流砂・ 戸田・道上式・ 無効・ 単二・道上式・ 無効・ 世口方程式モデル・
リセット	【保存	えして閉じる(S) キャンセル

図 III-1 ソルバー・タイプの設定画面

#	項目	設定方法	注意事項		
1	ソルバー・タイプ	ソルバーのタイプを設定します. 「スタンダード」と「アドバンスド」から選択可 能です.	「スタンダード」を選択した場 合,「+」マークの着いた項 目は設定できません.		
2	河床変動計算	河床変動計算の有無を設定します.			
3	移流項の差分方法	移流項の差分方法を設定します.「風上 差分」「CIP 法」から選択可能です			
4	+支川合流	支川合流モデルを利用するか設定します. 「無効」「タイプ A 左岸から」「タイプ B 右岸 から」「タイプ B 右岸から」から選択可能で す.	河川合流モデルを利用する 場合,「混合粒径」,「河岸浸 食」を利用することはできま せん.		
5	+河床材料の種類	河床変動計算に用いる河床材料の種類を 設定します.「均一粒径」「混合粒径」から選 択可能です.	「混合粒径」を選択した場合、「支川合流」、「掃流砂と 浮遊砂」利用することはできません。		
6	+流砂の種類	河床変動計算を行う際の流砂の種類を設定 します.「掃流砂」「掃流砂と浮遊砂」から選 択可能です.	「掃流砂と浮遊砂」を選択した場合、「混合粒径」は利用できません。		
7	+均一粒径の掃流砂公式	均一粒径に対する掃流砂量モデルを選択し ます. 「M.P.M 式」と「芦田・道上式」から選択 可能です.	「混合粒径」を選択した場合,利用できません.		
8	十河岸浸食	安息角による河岸浸食の有無を設定しま す.	「有効」とした場合,「支川合 流」を利用することはできま せん.		
9	+斜面崩落モデル		「混合粒径」を選択した場合,利用できません.		
10	+乱流モデル	乱流モデルの種類を設定します. 「渦動 粘性係数一定」「ゼロ方程式モデル」 「k-εモデル」から選択可能です.			

表 III-1 ソルバー・タイプの設定の説明

III.2 境界条件の設定

下流端及び上流端の境界条件に関する各種条件を設定します.

グループ ・ タイプ 境界条件 時間 初期水面形 河床材料 植生 + 合流点の情報 + 混合粒径の情報 + 河岸浸食の情報 + ホットスタート + 破堤モデル	周期境界条件 下流端水位 上流端の流速分布 等流計算に用いる河床勾配 上流勾配の値 ・支川勾配の値 流量の時間単位 上流端流量の時間変化 ・支川からの流入流量の時間変化	(無効 自由流出 等流計算 河床データから自動計算 の し の し し の し の に 利 に の の の の の の の に り の に り の に り の に り の に り の に り の に り の に り の に り の に り の に り の の の の	
---	--	--	--

図 111-2 境界条件の設定画面

#	項目	設定方法	注意事項
1	周期境界条件	周期境界条件 ^{※5} の有無を選択します.	
2	下流端水位	下流端水位を設定します. 「自由流出」の み選択可能です.	
3	上流端の流速分布	上流端の流速分布を設定します. 「上流端 水深から逆算」「等流計算」から選択可能 です.	
4	等流計算に用いる河床 勾配	上流端の流速分布において「等流計算」を 選択した場合に設定します.「河床データ から自動計算」「固定値」から選択可能で す.	「河床データからの自動 計算」を選択した場合, 計算格子の上流端勾配を 用いて等流計算を行いま す.
5	上流勾配の値	等流計算に用いる河床勾配において「固定 値」を選択し場合に、入力します。	
6	+支川勾配の値	支川合流モデルを利用し,等流計算に用いる 河床勾配において「固定値」を選択し場合に, 入力します.	
7	流量の時間単位	上流端流量の時間変化, +支川からの流入 流量の時間変化の時間の列の単位を設定し ます.「秒」「時間」から選択可能です.	
8	上流端流量の時間変化	編集をクリックし, 流量ハイドロと水位変化を 設定します.	時間の単位は「秒」と「時間」 から選択可能です. 流量の 単位は「m ³ /s」です.
9	+ 支川からの流入流量 の時間変化	支川合流モデルを利用する場合に, 支川の流 量ハイドロを設定します.	時間の単位は「秒」と「時間」 から選択可能です.流量の 単位は「m ³ /s」です.流量の データ数と開始終了時間は 本川のものと一致している 必要があります.

表 111-2 境界条件の設定の説明

^{※5} 周期境界条件とは、下流端の水理条件、流砂条件を上流端に与えること条件のことです.実験な どで周期性のある水理条件、河道条件、給砂条件の場合に用います.実河川で用いる場合、周期性 について十分な検証が必要です.

Ⅲ.3 時間に関する条件の設定

時間に関する各種条件を設定します.

ヴループ ソルバー・タイプ	計算結果の出力時間間隔(秒)	10
境界条件	計算タイム人テップ(秒)	0.01
初期水面形	計算結果の出力開始時間(秒)	30
河床材料	河床変動の計算開始時間(秒)[マイナスは河床変動無し]	30
植生	水位計算の繰り返し回数	10 茟
+合流点の情報	水位計算の緩和係数	0.8
+河岸浸食の情報 +その他 +ホットスタート +破堤モデル		

図 111-3 時間の設定画面

#	項目	設定方法	注意事項
1	計算結果の出力時間間 隔(秒)	計算結果を出力する時間間隔を設定しま す.	
2	計 算 タ イ ム ス テ ッ プ (秒)	計算ステップの時間間隔を設定します.	計算の効率と安定性を決 定づける重要なパラメー タです.
3	計算結果の出力開始時 間 (秒)	計算結果の出力を開始する時間を設定しま す.	
4	河床変動の計算開始時 間(秒)	河床変動計算を開始する時間を設定しま す.	マイナスを入力すると河 床変動計算は行われませ ん.
5	水位計算の繰返し回数	水位計算を行うときの、内部での繰返し回 数です.	水位計算が安定しない場
6	水位計算の緩和係数	水位計算を行うときの緩和係数	ロ, 詞罡ししく たさい.

表 III-3 時間の設定の説明

III.4 初期水面形の設定

初期水面形に関する各種条件を設定します.

12 計算条件		? ×
グループ ソルバー・タイプ 境界条件 時間 初期水面形 河床材料 植生 + 合流点の情報 + 混合粒径の情報 + 河岸浸食の情報 + その他 + 木ットスタート + 破堤モデル	*刀期水面形	等流計算 ▼
リセット		保存して閉じる(S) キャンセル

図 111-4 初期水面形の設定画面

#	項目	設定方法	注意事項
1	初期水面形	初期水面形の設定方法を選択します. 「等 流計算」のみ選択可能です.	

表 111-4 初期水面形の設定の説明

III.5 河床材料の設定

河床材料粒径を設定します.

IR 計算条件		? ×
グループ ソルバー・タイプ 境界条件 時間 初期水面形 河床材料	河床材料粒径(mm)	0.55
植生 +合流点の情報 +混合粒径の情報 +河岸浸食の情報 +その他 +ホットスタート +破堤モデル		
		保存して閉じる(S) キャンセル

図111-5 粗度の設定画面

表 III−5 刈床材料の設定の読

#	項目	設定方法	注意事項
1	河床材料粒径(mm)	河床変動計算利用する,河床材料粒径を入 力します.	

III.6 植生の設定

樹木の抵抗係数を設定します.具体的な植生の密生度は、セル単位で直接実数値 を指定します.

12 計算条件		? ×
グループ ソルバー・タイプ 境界条件 時間 初期水面形 河床材料 植生 +合流点の情報 +混合粒径の情報 +河岸浸食の情報 +不ットスタート +破堤モデル	樹木の抵抗係数	0.7
リセット		(保存して閉じる(S) キャンセル

図 III-6 植生の選択画面

表III-6 植生の説	明
-------------	---

#	項目	設定方法	注意事項
1	樹木の抵抗係数	樹木の抵抗係数を入力します.	

Ⅲ.7 合流点の情報の設定

合流点の情報に関する各種条件を設定します.ここで設定する値は、図 III-8 に 示す合流点の種類により異なるので注意が必要です.

境界条件 時間 初期水面形 河床材料 植生 +合流点の情報 +混合粒径の情報 +混合粒径の情報 +河岸浸食の情報 +その他 +ホットスタート +破堤モデル	本川横断方向線了格子番号(j_m2) 支川横断方向開始格子番号(j_t1) 支川横断方向終了格子番号(j_t2) 本川縦断方向支川開始格子番号(i_t1) 本川縦断方向支川終了格子番号(i_t2)	
--	--	--

図 III-7 合流点の情報の設定画面

#	項目	設定方法	注意事項
1	本川横断方向開始格子 番号(j_ml1)	図 111-8 参照	
2	本川横断方向終了格子 番号(j_ml2)	図 111-8 参照	
3	支川横断方向開始格子 番号(j_t1)	図 111-8 参照	
4	支川横断方向終了格子 番号(j_t2)	図 111-8 参照	
5	本川縱断方向支川開始 格子番号(i_t1)	図 111-8 参照	
6	本川縦断方向支川終了 格子番号(i_t2)	図 111-8 参照	

表 III-7 合	流点の情報の説明
-----------	-----------------

図 III-8(1) 合流点の情報の模式図(タイプA 左岸から合流)

図 III-8(2) 合流点の情報の模式図(タイプB 左岸から合流)

図 III-8(3) 合流点の情報の模式図(タイプB 右岸から合流)

III.8 混合粒径の情報の設定

混合粒径の情報に関する各種条件を設定します.

ソルバー・タイプ 境界条件 時間 初期水面形 河床材料 植生 +合流点の情報 +混合粒径の情報 +河岸浸食の情報 +その他 +ホットスタート +破堤モデル	初期粒度分布 堆積層1層の厚さ(m) 全移動層の厚さ(m) 考慮可能な層数	編集 0.01 0.1 30 ♀
---	--	---------------------------

図 111-9 混合粒径の情報の設定画面

#	項目	設定方法	注意事項
1	初期粒度分布	1 列目に各粒度分布(図 III-10 の丸の部 分の粒径 d. 単位は mm), 2 行目の粒径の 通過百分率(%)(図 III-10の p)を入力しま す.	
2	堆積層1層の厚さ(m)	河床変動において導入される多層モデルの 堆積層厚を入力します.	
3	全移動層の厚さ(m)	河床変動を考慮する厚さを入力します.	
4	考慮可能な層数	記憶可能な堆積層の層数を入力します.	

表 III-8 混合粒径の情報の説明

注1) 全移動層厚 e_thic と考慮可能な層数 nm について

河床を多層モデルで扱う場合,各層での粒径の存在率×記憶している河床の層数×グリット数で定 義される変数を必要とするため、大きな記憶容量が必要となり、メモリ不足になる可能性があります. そのため、考慮する層数にある程度の制約を設けています. 移動層の定義は図のようになっています. 図の黒線が,水路中心線に沿った断面 平均標高を表しています.

まず,この標高と水路中心線に沿った距離を変数として,最小二乗法により図の 青線に示す一定勾配の水路を求めます.次にこれを鉛直方向に平行移動し,最も標 高が低い地点と重なった部分(図 III-11 の○の部分)を基準として,この線から 一律 e_thic だけ深い部分(図 III-11 の点線)を移動層の下端と定義します.

この線から、上方向に堆積層厚 e_d で層を区切っていくと、各地点で層数 N が求 まります.この層数が非常に多い場合、つまり赤線と標高が大きく離れていてかつ 堆積層厚が小さい場合は、この層全てのデータを記憶する必要があり、メモリの負 荷が大きくなり、場合によっては計算が不可能になる可能性があります.

これを回避するために、記憶可能最大層数 nm を定義しています.計算を進めていき、堆積によって層数 N が増加し、N>nm となった場合は、計算が強制的に終了します.また、浸食が進み標高が移動層下端よりも低くなった場合も計算が終了します.このような場合や、メモリが足りずに計算できない場合は、nm、e_thic 及び e_d を変更すれば回避できる可能性があります.

図 III-10 粒度分布の分割法

水路中心線に沿った距離

図 III-11 移動層厚の定義

Ⅲ.9 河岸浸食の情報の設定

河岸浸食の情報に関する各種条件を設定します.

境界条件 時間 初期水面形 河床材料 植生 +合流点の情報 +混合粒径の情報 +混合粒径の情報 +その他 +ホットスタート +破堤モデル	河岸侵食終了断面 河岸の高さ(m) 河岸のスムージング スムージングの縦断方向範囲 土粒子の水中安息角(タンジェント)	5 🗼 0.03 (無効 🔹 5 🛫 0.3
--	---	------------------------------------

図 III-12 混合粒径の情報の設定画面

#	項目	設定方法	注意事項
1	河岸浸食開始断面	河岸浸食計算区間の上流側断面番号を入力 します.	
2	河岸浸食終了断面	河岸浸食計算区間の下流側断面番号を入力 します.	
3	河岸の高さ(m)	格子外側(横断方向)での河岸の高さを入 カします.	
4	河岸のスムージング	計算格子の左右端(j=1 と j=ny)が河岸浸 食した場合,計算領域を拡大し,計算格子 の再配置を行います.その際,計算格子を スムージングするか選択します.	
5	スムージングの縦断方 向範囲	ある1点の計算格子のスムージングを行う ときに、考慮する縦断方向の計算格子数を 入力します。	
6	土 粒 子 の 水 中 安 息 角 (タンジェント)	土粒子の水中安息角を入力します. 通常 tan30°程度です.	河岸浸食と斜面崩落モデ ルにおけるの閾値となり ます.

表 III-9 河岸浸食の情報の説明

Ⅲ.10 その他の設定

その他の各種条件を設定します.

グループ ソルバー・タイプ 境界条件 時間 初期水面形 河床材料 植生 +合流点の情報 +混合粒径の情報 +初岸浸食の情報 +その他 +ホットスタート +破堤モデル	水の密度 (kg/m ³) 土粒子の水中比重 土粒子の空隙率 土砂移動に対する2)欠流強度	1000 1.65 0.4 7
リセット	保存して閉じ	る(S) キャンセル

図 III-13 その他の情報の設定画面

#	項目	設定方法	注意事項
1	水の密度(kg/m³)	水の密度(kg/m³)を入力します.	
2	土粒子の水中比重	土粒子の水中比重を入力します.	
3	土粒子の空隙率	土粒子の空隙率を入力します.	
4	土砂移動に対する 2 次 流の強度	2 次流算定の係数です.	Ⅱ章の(64)式参照

表 III-10 その他の情報の説明

III.11 ホットスタート機能の設定

Hot Start 機能の各種条件を設定します. この Hot Start 機能を使って計算結果 の引き継ぎや再計算を行うことができます. 例えば長期間の洪水計算を行う際に, ハイドログラフ全体は粗い出力間隔で全体の流況を確認し, ピーク付近は細かい出 力間隔を設定し詳細な流況を可視化したい場合などに用いることができます.

v-)	→時つっくルを出力する		毎日 つ
ソルバー・タイプ	サンアイルを出力する	White Path	(ma)
現弥朱件時間	サファイルの表		1
初期水面形	→時ファイル 0 の出力時刻(秒)		
植生	一時ファイル1の出力時刻(秒)		1
+合流点の情報	一時ファイル 2の出力時刻(秒)		1
+混合粒径の情報	一時ファイル 3の出力時刻(秒)		
+ 冲圧 定良の / 同報 + 子の他	一時ファイル 4 の出力時刻(秒)		11
+ホットスタート	→時ファイル 5 の出力時刻(秒)		13
+破堤モデル	一時ファイル 6 の出力時刻(秒)		14
	一時ファイル 7 の出力時刻(秒)		16
	一時ファイル 8 の出力時刻(秒)		15
	一時ファイル 9の出力時刻(秒)		20
	計算開始方法	最初から計算する	
	読み込む一時ファイル名	Select File	

図 III-14 ホットスタート機能の設定画面

#	項目	設定方法	注意事項
1	ー時ファイルを出力する	Hot Start 機能を利用する場合は「Yes」を 選択します.	
2	出力する一時ファイルの 数	出カー時ファイルは最大で 10 個まで作 成可能です.	
3	ー時ファイル 0~9 の出力 時刻(秒)	ー時ファイルを出力する計算時刻を入力 します.	
4	計算開始方法	作成した一時ファイルを読み込んで再計 算したい場合は、「一時ファイルを読み 込んでリスタートする」を選択します.	
5	読み込む一時ファイル名	読み込む一時ファイルを選択します.	

表 III-11 ホットスタート機能の説明

III.12 破堤モデルの設定

破堤モデルの情報に関する各種条件を設定します.

ソルバー・タイプ 境界条件 時間 初期水面形 河床材料 植生 +合流点の情報 +混合粒径の情報 +河岸浸食の情報 +その他 +ホットスタート +破堤モデル	破堤モデル 堤体崩壊量式の係数α* 堤体崩壊量式の係数β* て*の探索範囲 指定方法 数値打 上流側の距離(m) 下流側の距離(m) 上流側の距離(m) 上流側の距離(m) 上流側の割合(0~100%) 下流側の割合(0~100%) 環体基盤高(m) 破堤開始水位(m) 堤体粒径の設定	決壊モデル 18 15 皆定(上下流別) 4 10 10 7.7 10 無効
---	--	--

図 III-15 破堤モデルの情報の設定画面

#	項目	設定方法	注意事項
1	破堤モデル	破堤モデルを設定します.「無効」「決壊 モデル」から選択可能です.	
2	堤体崩壊量式の係数α*	堤体崩壊土量算出に使用する計算α*の値 を入力します.	
3	堤防崩壊量式の係数 <i>β</i> *	堤体崩壊土量算出に使用する計算β*の値 を入力します.	
4	τ ∗の探索範囲	「数値指定(上下流別)」「破堤幅の割合 (上下流別)」から選択可能です.	上流側、下流側別々に値 を指定できます.
5	堤防基盤高(m)	堤防基盤高 (m) を指定します.	
6	破堤開始水位(m)	破堤開始水位(m)を指定します.	
7	堤体粒径の設定	堤体粒径の設定の有無を選択します.	
8	堤体粒径(mm)	堤防基盤高より高いを境に、河床材料粒径 (mm)と異なる堤体粒径(mm)に利用する.堤 体粒径(mm)を入力します.	

表 III-12 破堤モデルの情報の説明

IV. セル属性の設定方法

Nays2D Breach ではセル属性として、①「障害物セル」、②「移動床か固定床」、 ③「植生の密生度」、④「マニングの粗度係数」、⑤「堤防セル」、⑥「自由流出(下 流端・側方境界)」、⑦「上流端流入境界セル」、⑧「ドライベッド」、⑨「法面固定 セル」、⑩「決壊セル」、⑪「破堤開始水位判定セル」を設定することができます. 設定はプリプロセッサ—のオブジェクトブラウザから行います.

図 IV-1 プリプロセッサ—のオブジェクトブラウザにおけるセル属性の設定

設定方法は、「セル属性」のチェックボックスにチェックを入れ、設定したいセル属性のチェックボックスにチェックを入れます.その状態で計算格子のセルを選択し、右クリックから値を入力します.

図 IV-2 セル属性の設定方法. 図は障害物セルを設定している例.

1. 障害物セルの設定

障害物セルでは、以下のダイアログで通常セルか障害物セルが設定できます。障害物に設定されたセルでは、そのセルを横切ろうとする流量及び流砂フラックスが0となります。

🤌 障害物セルの編集	? ×
選択された格子セルでの、新しい 障害物セル の値を	え力してください。
障害物セル:	通常のセル マ 通常のセル
	障害物化ル

図 IV-3 障害物セルの設定ダイアログ

2. 移動床・固定床の設定

移動床・固定床の設定は以下のダイアログのように行います.固定床に設定され たセルでは、河床高さが初期河床高さ以下に浸食されなくなります.

🥐 固定床と移動床 の編集	2 ×
選択された格子セルでの、新しい 固定床と移 固	 動床の値を入力してください。 定床と移動床: 移動床 ▼ 0K

図 IV-4 固定床・移動床の設定ダイアログ

3. 植生の密生度の設定

植生の密生度の設定は以下のダイアログのように直接実数値を設定します.0は 植生がない状態を表します.負の値は無効なので,必ず0以上の値を設定してくだ さい.

コしてください。		
Jo check o		
植生の密生度: 0		
キャンセル		

図 IV-5 植生の密生度の設定ダイアログ

4. マニングの粗度係数の設定

マニングの粗度係数の設定は以下のダイアログのように直接実数値を設定します. 必ず0以上の値を設定してください.なお,計算格子をcsv形式,grid形式でイン ポートした場合,セル情報が読み込まれません.そのような場合も含めて粗度係数 は必ず設定するようにしてください.

マニングの粗度係数の編集		? ×
選択された格子セルでの、新しい マニングの粗度	係数 の値を	入力してください。
マニングの粗度係数:	: 0.03	
	OK	キャンセル

図 IV-6 マニングの粗度係数の設定ダイアログ

5. 堤防セルの設定

決壊モデルを選択したときに使用します.堤防セルでは、以下のダイアログで通常セルか堤防セルが設定できます.堤防セルは決壊と同時に、決壊地点から上下流方向に破 堤拡幅します.

図 IV-7 堤防セルの設定ダイアログ

6. 自由流出(下流端・側方境界)の設定

自由流出(下流端・側方境界)の設定では、以下のダイアログで壁境界セルか自由流 出セル(下流端・側方境界)が設定できます.自由流出(下流端・側方境界)に設定され た下流端のセルは,計算条件(「境界条件」-「下流端水位」)に「自由流出」を選んだ 場合に自由流出となります.自由流出(下流端・側方境界)に設定された側方境界のセ ルは自由流出となります.

🔮 自由流出(下流端・側方境界)の編集	? ×
選択された格子セルでの、新しい 自由流出(下) 自由流出(下流端・側方境界):	流端・側方境界〉の値を入力してください。 登境界セル 型 境界セル 型 登境界セル 型 ・ 観境界セル 目由流出セルくド流端・側方境界〉

図 IV-8 自由流出(下流端・側方境界)の設定ダイアログ

7. 上流端流入境界セルの設定

上流端流入境界セルの設定では、以下のダイアログで上流端流入境界セルか壁境界 セルが設定できます。壁境界セルに設定されたセルでは、そのセルに入ろうとする上 流端流量が0となります。

図 IV-9 上流端流入境界セルの設定ダイアログ

8. ドライベッドの設定

ドライベッドの設定では、以下のダイアログで通常セルかドライセルが設定できま す.ドライセルに設定されたセルでは、計算開始時の水深が0になります.通常セル の場合は、初期水面形(一定勾配(直線)or 折線 or 等流計算 or 不等流計算)の水深に なります。

図 IV-10 ドライベッドの設定ダイアログ

9.決壊セルの設定

決壊モデルを選択したときに使用します.決壊セルの設定では、以下のダイアログで 通常セルか決壊セルが設定できます.決壊セルに設定されたセルでは、破堤開始水位 判定セル(10.参照)の水位が破堤開始水位に到達したと同時に堤防基盤高まで標高 が下げります.

図 IV-12 決壊セルの設定ダイアログ

10. 破堤開始水位判定セルの設定

決壊モデルを選択したときに使用します.破堤開始水位判定セルの設定では、以下 のダイアログで通常セルか破堤開始水位判定セルが設定できます.破堤開始水位判定 セルに設定されたセルでは、そのセルの水位が破堤開始水位に到達したと同時に決壊 セル(9.参照)の標高が堤防基盤高まで下がります.なお、破堤開始水位判定セルは複 数セルの選択はできません.

🔮 破堤開始水位判定セル の編集	? ×
選択された格子セルでの、新しい 破堤開始水位判定 破堤開始水位判定セル:	宅セルの値を入力してください。 通常のセル 一通常のセル 磁堤開始水位刊定セル

図 IV-13 破堤開始水位判定セルの設定ダイアログ

【ご利用にあたって】

- 本ソフトウェアを利用した成果を用いて論文,報告書,記事等の出版物を作成 する場合は,本ソフトウェアを使用したことを適切な位置に示してください.
- iRIC サイトで提供している河川の地形データなどはサンプルデータであり,実際のものとは異なる場合があります.あくまでもテスト用としてご試用下さい.
- ご感想, ご意見, ご指摘は http://i-ric.org にて受け付けております.

RIC Software Nays2D Breach Solver Manual

編集・執筆者	清水康行(北海道大学大学院工学研究科)	全体
	井上卓也(株式会社 開発工営社)	全体
	濱木 道大(株式会社 開発工営社)	Ⅲ-8章, Ⅲ-7章
	岩崎 理樹(北海道大学大学院工学研究科)	Ⅲ-6~7 章, Ⅲ-8 章, Ⅲ-11 章